Uniform growth of groups acting on Cartan-Hadamard spaces

نویسنده

  • G. Besson
چکیده

We say that Γ has uniform exponential growth if Ent Γ > 0. In [11], remarque 5.12, M. Gromov raised the question whether exponential growth always implies uniform exponential growth. The answer is negative, indeed, in [14] J.S. Wilson gave examples of finitely generated groups of exponential growth and non uniform exponential growth. Nevertheless, exponential growth implies uniform exponential growth for hyperbolic groups [12], geometrically finite groups of isometries of Hadamard manifolds with pinched negative curvature [1], solvable groups [13] and linear groups [10], [4], [3]. For further references see the exposition paper [7]. We suppose that (X, g) is a n-dimensional Cartan Hadamard manifold of pinched sectional curvature −a2 ≤ K ≤ −1. Our main result is the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On subdifferential in Hadamard spaces

In this paper, we deal with the subdierential concept onHadamard spaces. Flat Hadamard spaces are characterized, and nec-essary and sucient conditions are presented to prove that the subdif-ferential set in Hadamard spaces is nonempty. Proximal subdierentialin Hadamard spaces is addressed and some basic properties are high-lighted. Finally, a density theorem for subdierential set is established.

متن کامل

Mean curvature and compactification of surfaces in a negatively curved Cartan–Hadamard manifold

where χ(S) is the Euler characteristic of the surface, B r denotes the geodesic r-ball in Hn(b) and Vol(S 2∩Bb,n r ) Vol(B r ) is the volume growth of the domains S2 ∩B r . A natural question arises in this context: can we prove the finiteness of the topology of a not necessarily minimal surface in a Cartan–Hadamard manifold and, moreover, establish a Chern–Osserman-type inequality for its Eule...

متن کامل

Asymptotic geometry in the product of Hadamard spaces

In this article we study asymptotic properties of certain discrete groups Γ acting by isometries on a product X = X1×X2 of locally compact Hadamard spaces. The motivation comes from the fact that Kac-Moody groups over finite fields, which can be seen as generalizations of arithmetic groups over function fields, belong to this class of groups. Hence one may ask whether classical properties of di...

متن کامل

Almost simple groups with Socle $G_2(q)$ acting on finite linear spaces

 After the classification of the flag-transitive linear spaces, the attention has been turned to line-transitive linear spaces. In this article, we present a partial classification of the finite linear spaces $mathcal S$ on which an almost simple group $G$ with the socle $G_2(q)$ acts line-transitively.

متن کامل

Best proximity point theorems in Hadamard spaces using relatively asymptotic center

In this article we survey the existence of best proximity points for a class of non-self mappings which‎ satisfy a particular nonexpansiveness condition. In this way, we improve and extend a main result of Abkar and Gabeleh [‎A‎. ‎Abkar‎, ‎M‎. ‎Gabeleh‎, Best proximity points of non-self mappings‎, ‎Top‎, ‎21, (2013)‎, ‎287-295]‎ which guarantees the existence of best proximity points for nonex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008